SQMS Center

A Department of Energy National Quantum Information Science Research Center

Toward the quantum future

The Superconducting Quantum Materials and Systems Center, led by Fermi National Accelerator Laboratory, is one of five research centers funded by the U.S. Department of Energy as part of a national initiative to develop and deploy the world’s most powerful quantum computers and sensors.

SQMS brings together more than 500 experts from 34 partner institutions—national laboratories, academia and industry—in a mission-driven, multidisciplinary collaboration that integrates deep expertise in quantum information science, material science, applied and theoretical superconductivity, computational science, particle and condensed matter physics, cryogenics, microwave devices and controls engineering, industry applications and more.

Ultrahigh-Q SRF cavities

The SQMS Center is exploring the use of its world-record quality-factor superconducting radio-frequency cavities as building blocks of quantum computing platforms that promise orders of magnitude in performance improvements and scalability over the current state-of-the-art commercial platforms. We are also exploring SRF-based quantum memories and transducers.

Superconducting qubits and processors

SQMS is on a mission to bring dramatic performance improvement to these devices. Working hand in hand with quantum industry leaders, we have created a national nanofabrication task force that leverages several research and production foundries and has demonstrated systematic performance improvements with newly developed fabrication processes.

Understanding quantum decoherence

SQMS researchers use a broad array of specialized material characterization techniques to study dissected cavities and qubits of varying performance levels. Scientists apply these techniques to gain insight into the nanoscale and atomic-scale mechanisms limiting quantum coherence to advance the performance of quantum devices.

Algorithms, simulations and benchmarking

Researchers are tailoring algorithms to efficiently process information of the SQMS SRF QPUs and exploring the use of commercial quantum platforms and benchmarking computational capabilities of different hardware. Applications range from fundamental physics simulations for high-energy and condensed-matter physics to finance and MRI.

Quantum sensing for fundamental physics

The exquisite sensitivity of the Center’s high-coherence devices offers new platforms with reach into unexplored regimes. Researchers focus on searching for particles beyond the Standard Model, dark matter candidates, gravitational waves, measurements of fundamental properties at the precision frontier, and tests of quantum mechanics, and evaluating how quantum sensing schemes can bring advantage in these experiments.

Quantum ecosystem

SQMS is creating a space and a community to train and educate the next generation of researchers to advance the field of quantum information science. This is accomplished by providing opportunities and leveraging partnerships between the multidisciplinary SQMS network within the Chicagoland area, throughout the state of Illinois and across the globe. The Center strives to make quantum information science accessible to everyone.

Scaling up milli-kelvin cryogenics

SQMS is developing the world’s largest and highest cooling power dilution refrigerator, capitalizing upon Fermilab’s unique facilities and expertise in cryogenics. Engineers are also developing critical technologies to scale up to future large quantum computing data centers.

Phone email icon

Media contact

Contact Fermilab Communication.

media@fnal.gov | 630-840-3351

Image stack icon

Multimedia

Explore our photo and video gallery.

Play button

News

Read our latest news and updates.

Upcoming events

March APS Meeting,

March 3-8, 2024

Workshop: UK and US Collaboration in Quantum

March 20-22, NPL

Workshop: Radiation Impact on Superconducting Qubits (RISQ)

May 30-31, Fermilab

Workshop: Nanofabrication Taskforce & Design

May 16-17, NIST